Menu Panier

Topological and symbolic dynamics

Éditeur
Société mathématique de France
Format
Livre Broché
Collection
Cours spécialisés
Catégorie
Sciences appliquées
Langue
Français
Parution
10 - 2007
EAN
9782856291436
Dimensions
180 × 240 × 10 mm
Indisponible
CHF 84.10

Résumé du livre

Un système dynamique est une application continue d'un espace métrique compact dans lui même. La dynamique topologique étudie les itérées d'une telle application ou, de manière équivalente, les trajectoires des points dans l'espace des états. Les concepts fondamentaux de la dynamique topologique sont: la minimalité, la transitivité, la récurrence, la propriété de pistage, la stabilité, l'équicontinuité, la sensibilité, les attracteurs et l'entropie topologique.

La dynamique symbolique étudie les systèmes dynamiques dont l'espace des états est de dimension nulle et consiste de suites de symboles. Les principales classes de systèmes dynamiques symboliques sont: les odomètres, les systèmes de type fini, les systèmes sofiques, les systèmes sturmiens, substitutifs et de Toeplitz, et les automates cellulaires.


A dynamical system is a continuous self-map of a compact metric space. Topological dynamics studies the iterations of such a map, or equivalently the trajectories of points of the state space. The basic concepts of topological dynamics are: minimality, transitivity, recurrence, shadowing property, stability, equicontinuity, sensitivity, attractors and topological entropy. Symbolic dynamics studies dynamical systems whose state spaces are zero-dimensional and consist of sequences of symbols. The main classes of symbolic dynamical systems are: adding machines, subshifts of finite type, sofic subshifts, Sturmian, substitutive and Toeplitz subshifts, and cellular automata.