Le spectre des surfaces hyperboliques
- Éditeur
- Cnrs Editions
- Format
- Livre Broché
- Collection
- Savoirs actuels, Mathématiques
- Catégorie
- Sciences appliquées
- Langue
- Français
- Parution
- 09 - 2011
- Nombre de pages
- 338
- EAN
- 9782759805648
- Dimensions
- 160 × 230 × 20 mm
Résumé du livre
Le spectre des surfaces hyperboliques
Cet ouvrage est une introduction à la théorie spectrale du laplacien sur les surfaces hyperboliques (de courbure -1), compactes ou d'aire finie. Pour certaines de ces surfaces, dites « surfaces hyperboliques arithmétiques », les fonctions propres sont des objets de nature arithmétique et des outils d'analyse sont employés conjointement à des méthodes puissantes de théorie des nombres pour les étudier.
Après une introduction à la géométrie hyperbolique des surfaces insistant sur celles qui sont arithmétiques, puis une introduction aux méthodes d'analyse spectrale de l'opérateur de Laplace sur celles-ci, l'auteur développe l'analogie géométrie (géodésiques fermées) - arithmétique (nombres premiers) en démontrant la formule des traces de Selberg. Outre des applications importantes à l'arithmétique, l'auteur propose des applications à la statistique spectrale de l'opérateur de Laplace et à la propriété d'unique ergodicité quantique (théorème d'unique ergodicité quantique arithmétique, récemment démontré par Elon Lindenstrauss).
L'ouvrage, issu de plusieurs cours de M2 à Orsay et à l'Université P. & M. Curie, permet au lecteur de parcourir un champ mathématique classique et d'être conduit vers des domaines de recherche très actifs.